Global optimization algorithm for sum of generalized polynomial ratios problem
نویسندگان
چکیده
منابع مشابه
A Global Optimization Algorithm for Sum of Linear Ratios Problem
We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branc...
متن کاملA global optimization algorithm for sum of quadratic ratios problem with coefficients
In this paper a global optimization algorithm for solving sum of quadratic ratios problem with coefficients and nonconvex quadratic function constraints (NSP ) is proposed. First, the problem NSP is converted into an equivalent sum of linear ratios problem with nonconvex quadratic constraints ( LSP ). Using linearization technique, the linearization relaxation of LSP is obtained. The whole prob...
متن کاملA Polynomial-time Exact Algorithm for the Subset Sum Problem
Subset sum problem, (SSP), is an important problem in complexity theory, it belongs to complexity class NP-Hard, therefore to find a polynomial-time exact algorithm that solves subset sum problem proves that P=NP. In the present paper it will be shown a theorem that allows us to develop, as described in the paper, an algorithm of polynomial-time complexity. For a deepening on complexity theory ...
متن کاملImproved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2013
ISSN: 0307-904X
DOI: 10.1016/j.apm.2012.02.023